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Potts model on Sierpinski carpets 

Lin Bin 
Department of Physics, Beijing Normal University, Beijing, China 

Received 13 January 1986 

Abstract. Migdal-Kadanoff bond-moving renormalisation is used to study the q-state Potts 
model on Sierpinski carpets. A general approximate recursion relation including q as a 
parameter is given. The property of 'bond-interchanging invariance' is found and used in 
deriving the recursion relation. Fixed points and critical exponents for some carpets are 
presented. Marginal fixed points instead of unstable ones are found. Several typical flow 
diagrams are also shown. 

The physical models on fractals with finite ramification, such as the Koch curve and 
Sierpinski gasket, exhibit no phase transition at finite temperature [l-31. When the 
fractals possess infinite ramification the finite temperature transition is possible. Gefen 
et a1 have studied the Ising model on Sierpinski carpets by using Migdal-Kadanoff 
RSRG transformations [4-61. They obtained a recursion relation and used it to find 
the fixed points and critical exponents for central cutout Sierpinski carpets [4]. We 
consider, on the same type of carpets, the Potts model. 

We employ the same renormalisation scheme as Gefen et a1 [4] used for the Ising 
model (Migdal-Kadanoff bond-moving renormalisation) to construct the recursion 
relation for the Potts model. The relation required is 

e-K; = [ I  +(q- 1) e ~ ~ m ] ~ - ' [ l  +(q -1) e- ' ] ' - (~ - e - K m ) b - f ( l  -e-')' 

[ I  + (q - 1) e-Km~b- ' [~  + ( q  - 1) e-']' + ( q  - 1 ) ( I  - e-Km)b-f(l - 

i = l , 2  (1) 
where K\-= K '  and KL = K L  are renormalised interaction constants [4]. The variables 
K ,  and K are defined by 

for K '  K ,  = bK 

k = ( b  - I -  l ) K  + 2 K ,  

2 = + ( b - 1 - 2 ) K  + 2 K , .  (3) 

(2) 
for K k. K ,  = t ( b -  l ) K  + K ,  

In (2) and (3), K and K ,  are two types of interaction constant (as in [4]) on Sierpinski 
carpets and b and 1 are the structure parameters of the carpets: 1 x 1 subsquares are 
eliminated from b x b subsquares [4]. q is the number of states of the Potts model. 

Recursion relation (1) is a general expression which not only includes the structure 
parameters b and 1 but is also a function of q. So it automatically treats the Ising 
model as the special case of q = 2. It should be mentioned that relation (1) is an 
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Figure 1. Two equivalent renormalisations: K ' =  K". 

approximate recursion because the bond-moving renormalisation used is itself an 
approximate method. We present the recursion (1) in the form of e-x which is most 
convenient for the Potts model. The variable form tanh x is convenient for the Ising 
model but can hardly work on the Potts model. 

In constructing the recursion relation we find and use the property of 'bond- 
interchanging invariance' explained as follows. We find that the following decimation 
renormalisations (figures l (a )  and (b))  are equivalent for any q value. With the help 
of these we constructed a RG procedure shown schematically in figure 2 which has 
been used in deriving recursion (1).  

k 

* 

I ii, 

io )  ibJ i c l  id1 

Figure 2. A renormalisation procedure ( a )  afte: bond moving. There are two sections of 
( b  - 1 ) / 2  K ,  bonds separated by a section of I K bonds; ( b )  after bond interchanging, (c) 
making the first decimation and ( d )  final renormalised bond I? after the second decimation. 

Four matrix elements determining critical exponents can be easily derived from 
the recursion relation (1). They are 

Here we have used the notation 

[ l ] = [ l + ( q - l )  e-"-] [2] = [ 1 - e-"m] 

[3] = [1+  ( q  - 1) e-'] 141 = [ 1 -e-"]. ( 5 )  

The numerical results for critical points and critical exponents are summarised in 
table 1 where critical points are shown in coordinates (e-", e-"-). Fixed points E and 
F (see flow diagrams in figure 3) are non-trivial. Besides these there are three trivial 
fixed points for each carpet, A, B and C ,  with coordinates ( K ,  K , )  = (0, O ) ,  (0, CO) and 
(CO, CO) respectively. When b = I + 2 an additional trivial point D = (CO, 0) appears. 

In table 1 we see that point E is marginal, y ,  > 0 and yK* = 0, and the yKh  value 
is independent of q. Hence it also holds in the Ising model. Point F with b = I +  2 > 3 
is also marginal regardless of the value of q. These results differ from those of reference 
[4] where the points E and Fare tricritical and critical points, respectively. In reference 
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Figure 3. Flow diagrams for the Potts model on Sierpinski carpets with central cutout. ( a )  
( e  b, I )  = ( 3 , 3 , 1 ) ,  ( b )  (q ,  b, I )  = ( 3 , 5 , 3 ) ,  ( c )  (q, b, I )  = ( 3 , 7 , 3 ) ,  (4 (q ,  b, U = ( 4 , 3 , 1 ) ,  ( e )  
(q, b, 1 )  = ( 5 , 5 , 3 ) ,  (f) (q, b, I )  = ( 4 , 7 , 3 ) .  

[4] ( a  tanh K : / a  tanh K j )  is used in calculating critical exponents, ( a  tanh K : /  
a tanh K,) = (cosh’ Kj/cosh2 K : ) ( a K l / a K j ) .  We guess that in the calculations of refer- 
ence [4] (cosh2 Ki/cosh2 K I )  is not taken to be unity at the infinite fixed point. This 
accounts for the differences in critical exponents between this paper and reference [4]. 
In our calculation the matrix elements ( d K : / d K j )  are used according to the definition 
of critical exponents. 

We conjecture that the marginal critical points ( K * ,  03) and (CO, K*,) are due to 
the peculiarity of elimination. A carpet with K ,  = aK + PK, (for K ’ )  instead of the 
case K ,  = bK (see (2)) will shift the critical point ( K * ,  00) to ( K * ,  K:). Similarly, 
the critical point (CO, K*,) when b = 1+2>  3 is the result of k =2K, (for K $ ,  see (3));  
if an elimination of a carpet makes k = a’K + P’K, ,  (00, K : )  would disappear. All 
these deserve further study. 

Taking q = 2 we repeat Gefen et al’s results for the Ising model [4] except for the 
marginal case y = 0 pointed out above (see table 1 ) .  The critical points of the q = 2 
Potts model obey the exact relation K$otts=2Kzi,g [7] with the Ising model. Our 
numerical results agree with the relation. Table 1 lists the exponents of q = 5 for we 
expect that the critical q value qc (beyond which the transition becomes first order) 
on Sierpinski carpets will be larger than four. There are a few calculating mistakes in 
reference [4]: (b, I )  = (3, l ) ,  hF2 = -0.137 not -0.797; (b, I )  = (15,7),  D = 1.909 not 
1.329; (b,1)=(15,11) ,  D=1.715 not 1.716. 

The dependence of critical exponents on D (i.e. b and I )  and q can be seen from 
table 1. We see that, except for the case b = 3 , 1 =  1 ,  y ,  (the thermal exponent represented 
by the value of y larger than zero from two values of y )  decreases with decreasing D 
at a constant q, which includes 1 increasing for b fixed and b decreasing for I fixed. 
This conclusion has been reached by Gefen et a1 [4] for the king model. Now we see 
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Table 1. Results for the Potts model on central cutout Sierpinski carpets. 

2 3 1  
2 7 5  
2 11 9 
2 7 1  
2 7 3  
2 11 3 
2 31 29 
2 31 23 

3 3 1  
3 5 3  
3 5 1  
3 7 1  
3 7 3  
3 7 5  
3 15 1 
3 15 5 
3 15 7 
3 15 9 
3 31 29 

4 3 1  
4 7 1  
4 7 3  
4 7 5  

5 3 1  
5 5 1  
5 5 3  

1.893 
1.633 
1.538 
1.989 
1.986 
1.968 
1.394 
1.767 

1.893 
1.723 
1.975 
1.989 
1.986 
1.633 
1.998 
1.957 
1.909 
1.835 
1.374 

1.893 
1.989 
1.986 
1.633 

1.893 
1.975 
1.723 

0.786 
0.959 
0.984 
0.777 
0.841 
0.843 
0.998 
0.954 

0.746 
0.899 
0.720 
0.751 
0.815 
0.946 
0.836 
0.859 
0.875 
0.897 
0.997 

0.717 
0.733 
0.796 
0.935 

0.694 
0.679 
0.867 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 

0.562 
0.349 
0.287 
0.683 
0.594 
0.648 
0.202 
0.507 

0.619 
0.448 
0.738 
0.747 
0.65 1 
0.373 
0.724 
0.683 
0.650 
0.599 
0.206 

0.662 
0.793 
0.692 
0.392 

0.695 
0.823 
0.497 

0 0.177 
0 0  
0 0  
0 0.739 
0 0.577 
0 0.779 
0 0  
0 0.608 

0 0.124 
0 0  
0 0.628 
0 0.713 
0 0.545 
0 0  
0 0.830 
0 0.788 
0 0.719 
0 0.572 
0 0  

0 0.0952 
0 0.694 
0 0.522 
0 0  

0 0.0773 
0 0.588 
0 0  

0.969 
0.203 
0.112 
0.996 
0.991 
0.999 
0.0345 
0.999 95 

0.983 
0.319 
0.993 
0.998 
0.995 
0.190 
0.999 97 
0.9999 
0.9998 
0.999 
0.0340 

0.989 
0.999 
0.996 
0.180 

0.993 
0.996 
0.285 

0.224 
0 
0 
0.694 
0.524 
0.652 
0 
0.476 

0.160 
0 
0.743 
0.758 
0.561 
0 
0.730 
0.672 
0.601 
0.533 
0 

0.123 
0.803 
0.588 
0 

0.0992 
0.823 
0 

-0.137 
0.342 
0.286 

-1.873 
- 1.445 
-2.089 

0.202 
-2.128 

-0.106 
0.423 

- 1.906 
-2.188 
-1.724 

0.371 
-2.918 
-2.690 
-2.318 
- 1.9'05 

0.206 

-0.0864 
-2.443 
- 1.946 

0.393 

-0.0732 
-2.312 

0.475 

it also holds on the Potts model. In all non-(b = 3 , 1 =  1) cases, y ,  increases with q 
monotonically. We find a similar result in normal lattices [8,9]. 

As has been pointed out by reference [4] b = 3, 1 = 1 is a special case. It satisfies 
b = 1 + 2 but differs from all b = 1 + 2 > 3 cases in the locations of critical points, values 
of critical exponents and the patterns of flow diagrams. Now the variation of the 
exponents with q in the b = 3, 1 = 1 case is also unusual: at point E y K (  =yt) increases 
with q but at point F, yF,(=yt) decreases as q increases. 

We show the flow diagrams in ( K ,  K,) space. In each diagram the critical line EF 
separates the ordered phase (upper part) from the disordered one (lower part). The 
flow diagrams in figure 3 can be divided into three classes: b = 1 + 2 = 3, b = 1 + 2 > 3 
and b > I + 2  according to the locations of the critical points. This classification is 
independent of q and valid for the Ising model. In fact Gefen et a1 have made the 
same classification in their work for the king model [4]. We see that when q varies 
the patterns of flow diagrams remain unchanged. However, the ordered phase area 
reduces as q increases (see figure 3) .  

The author would like to thank Professor 2 R Yang for helpful discussions and valuable 
suggestions on this manuscript. This work was supported in part by science funds 
awarded by the Chinese Academy of Science. 
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